
74LVT16373•74LVTH16373

Connection Diagrams
Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
LE	
$\mathrm{I}_{\mathrm{n}}-\mathrm{I}_{15}$	Latch Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Inputs
NC	3-STATE Outputs

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	LE_{1}	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{2}$	LE_{2}	NC	I_{15}

Truth Tables

Inputs			Outputs
LE_{1}	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{0}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Inputs			Outputs
LE ${ }_{2}$	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{8}-\mathrm{l}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O
GH W Vo mate GH I Previo	prior to	OW trans	

Functional Description

The LVT16373 and LVTH16373 contain sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the Latch Enable (LE n) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e, a latch output will change states each time its D input changes. When $L E_{n}$ is LOW

Logic Diagrams

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Electrical Characteristics (Continued)						
Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ \mathrm{(V)} \end{gathered}$	$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current	3.6		0.19	mA	Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current	3.6		5	mA	Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current	3.6		0.19	mA	Outputs Disabled
$\mathrm{I}_{\mathrm{CCZ}}{ }^{+}$	Power Supply Current	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\Delta^{\text {CC }}$	Increase in Power Supply Current (Note 8)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at $V_{C C}$ or GND
Note 5: Applies to bushold versions only (74LVTH16373). Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.						

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
		(V)	Min	Typ	Max		
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		0.8		V	(Note 10)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 10: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.2 \end{aligned}$	ns
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 4.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 5.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.4 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup Time, D_{n} to LE	1.0		0.8		ns
t_{H}	Hold Time, D_{n} to LE	1.0		1.1		ns
t_{w}	LE Pulse Width	3.0		3.0		ns
toshi $t_{\text {OSLH }}$	Output to Output Skew (Note 11)		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 12: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

www.fairchildsemi.com

